RAID combines two or more physical hard disks into a single logical unit using special hardware or software. Hardware solutions are often designed to present themselves to the attached system as a single hard drive, so that the operating system would be unaware of the technical workings. For example, if one were to configure a hardware-based RAID-5 volume using three 250 GB hard drives (two drives for data, and one for parity), the operating system would be presented with a single 500 GB volume. Software solutions are typically implemented in the operating system and would present the RAID volume as a single drive to applications running within the operating system.
There are three key concepts in RAID: mirroring, the writing of identical data to more than one disk; striping, the splitting of data across more than one disk; and error correction, where redundant parity data is stored to allow problems to be detected and possibly repaired (known as fault tolerance). Different RAID schemes use one or more of these techniques, depending on the system requirements. The purpose of using RAID is to improve reliability and availability of data, ensuring that important data is not harmed in case of hardware failure, and/or to increase the speed of file input/output.
Each RAID scheme affects reliability and performance in different ways. Every additional disk included in an array increases the likelihood that one will fail, but by using error checking and/or mirroring, the array as a whole can be made more reliable by the ability to survive and recover from a failure. Basic mirroring can speed up the reading of data, as a system can read different data from multiple disks at the same time, but it may be slow for writing if the configuration requires that all disks must confirm that the data is correctly written. Striping, often used for increasing performance, writes each bit to a different disk, allowing the data to be reconstructed from multiple disks faster than a single disk could send the same data. Error checking typically will slow down performance as data needs to be read from multiple places and then compared. The design of any RAID scheme is often a compromise in one or more respects, and understanding the requirements of a system is important. Modern disk arrays typically provide the facility to select an appropriate RAID configuration.
No comments:
Post a Comment